Identification of mushroom body miniature, a zinc-finger protein implicated in brain development of Drosophila.

نویسندگان

  • Thomas Raabe
  • Susanne Clemens-Richter
  • Thomas Twardzik
  • Anselm Ebert
  • Gertrud Gramlich
  • Martin Heisenberg
چکیده

The mushroom bodies are bilaterally arranged structures in the protocerebrum of Drosophila and most other insect species. Mutants with altered mushroom body structure have been instrumental not only in establishing their role in distinct behavioral functions but also in identifying the molecular pathways that control mushroom body development. The mushroom body miniature(1) (mbm(1)) mutation results in grossly reduced mushroom bodies and odor learning deficits in females. With a survey of genomic rescue constructs, we have pinpointed mbm(1) to a single transcription unit and identified a single nucleotide exchange in the 5' untranslated region of the corresponding transcript resulting in a reduced expression of the protein. The most obvious feature of the Mbm protein is a pair of C(2)HC zinc fingers, implicating a function of the protein in binding nucleic acids. Immunohistochemical analysis shows that expression of the Mbm protein is not restricted to the mushroom bodies. BrdUrd labeling experiments indicate a function of Mbm in neuronal precursor cell proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

enok encodes a Drosophila putative histone acetyltransferase required for mushroom body neuroblast proliferation

Mushroom bodies in the Drosophila brain are centers for olfactory learning and memory. We have previously shown that the mushroom bodies comprise three types of neurons with distinct axonal projections. These three types of neurons are generated sequentially from common neuroblasts. We report here the identification of a gene that we have named enoki mushroom (enok), which when it is mutated gi...

متن کامل

Gradients of the Drosophila Chinmo BTB-Zinc Finger Protein Govern Neuronal Temporal Identity

Many neural progenitors, including Drosophila mushroom body (MB) and projection neuron (PN) neuroblasts, sequentially give rise to different subtypes of neurons throughout development. We identified a novel BTB-zinc finger protein, named Chinmo (Chronologically inappropriate morphogenesis), that governs neuronal temporal identity during postembryonic development of the Drosophila brain. In both...

متن کامل

The Drosophila castor gene is involved in postembryonic brain development

castor (cas) encodes a zink finger protein expressed in a subset of Drosophila embryonic neuroglioblasts where it controls neuronal differentiation. We show here that cas is expressed at larval and pupal stages in brain cell clusters where it participates in the elaboration of the adult structures. In particular using the MARCM system (mosaic analysis with a repressible cell marker), we show th...

متن کامل

Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors.

The mushroom bodies, bilaterally symmetric regions in the insect brain, play a critical role in olfactory associative learning. Genetic studies in Drosophila suggest that plasticity underlying acquisition and storage of memory occurs at synapses on the dendrites of mushroom body Kenyon cells (Dubnau et al., 2001). Additional exploration of the mechanisms governing synaptic plasticity contributi...

متن کامل

The mouse homolog of the region specific homeotic gene spalt of Drosophila is expressed in the developing nervous system and in mesoderm-derived structures

The region specific homeotic gene spalt (sal) of Drosophila determines the specification of terminal segments. Its mutation leads to an incomplete transformation of terminal segments into trunk-like segments. The gene product is a zinc finger protein with a novel structure. We have isolated the mouse homolog of the Drosophila spalt gene (msal). The msal cDNA sequence is similar to its Drosophil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 39  شماره 

صفحات  -

تاریخ انتشار 2004